Answer all questions in the booklet(s) provided. A point group flow chart, periodic table and other information are attached. Please write your name on each booklet used. You have <u>3</u> hours.

[15] <u>Question 1</u>

- a) Determine the possible microstates for an s^1d^1 electronic configuration for a free ion and arrange them in a microstate table (M_L vs. M_S). (10 marks)
- b) Determine the terms for this configuration. (4 marks)
- c) What is the ground-state term? (1 mark)

[16] <u>Question 2</u>

Determine the symmetry elements and point group for (4 marks each):

a) BH ₃	b) fac-[FeCl ₃ Br ₃] ³⁻	c) ethane (staggered)	d) NCS ⁻
	-/ Jose [

[10] <u>Question 3</u>

An example of a linear 2-coordinate complex is [Au(CN)₂]⁻.

- a) Draw and label (with the appropriate d orbital) the d-orbital splitting diagram for this complex and fill it with the appropriate number of electrons. (Remember that your z axis should correspond to your principal rotation axis!). (6 marks)
- b) Assuming Ti(CN)₂ and $[Co(CN)_2]^+$ adopt the same structure estimate their μ_{eff} . (4 marks)

[12] <u>Ouestion 4</u>

Sketch all the isomers of the following complex ions:

- a) i) $Pt(bipy)_2BrCl$ ii) $Re(dien)Br_2Cl$ (bipy = 2,2'-bipyridine; dien = diethylenetriamine)
- b) Name the two complexes in a)

[8] <u>Question 5</u>

Construct molecules that have the following point groups: a) C_i b) D_{2d}

(4 marks each). (Note: Molecules must be reasonably chemically consistent!)

(Use of the attached Tanabe-Sugano diagrams may help in answering the following).

- a) Why is $[FeCl_6]^{3-}$ essentially colourless?
- b) List all the spin-allowed transitions (originating from the ground-state) for $[Cr(CN)_6]^{4-}$.
- c) Why is the nephelauxetic parameter, β , significantly smaller for $[MnI_6]^{3-}$ than for $[MnF_6]^{3-}$?
- d) Determine the ground-state term symbol for: i) Te ii) Ir^{4+} iii) $[CoCl_6]^{4-}$

[14] <u>Question 7</u>

a) The experimental magnetic moments of four manganese complexes are given below. Write down the electronic configurations (in terms of t_{2g} and e_g orbitals in an octahedral field) that is consistent with the data and state whether the complexes are high spin or low spin. (6 marks)

<u>Complex</u>	<u>μ_{exp} (B.M.)</u>
$[Mn(CN)_{6}]^{4-}$	1.8
$[Mn(CN)_{6}]^{3-}$	3.2
$[Mn(NCS)_6]^{4-}$	6.1
$[Mn(acac)_3]$	5.0

b) Explain, with the aid of a rough graph, why a plot of hydration enthalpy versus number of delectrons in the first-row transition metals (Sc to Zn) is *not* linear for the following reaction (4 marks):

 M^{2+} + 6 H₂O \longrightarrow $[M(H_2O)_6]^{2+}$ $\Delta H_{hydration}$

c) Almost all first-row transition metals prefer octahedral geometry over tetrahedral. This is the case for Co(II) and Ni(II) complexes. However, Co(II) is more likely to form a tetrahedral complex than Ni(II). Why? (Explain in terms of LFSE). (4 marks)

[10] <u>Question 8</u>

Given a molecule with C_{4v} symmetry:

- a) Draw a SALC corresponding to each of the following symmetry labels: i) a_2 ii) e iii) b_1 (There may be more than one SALC possible for each label. Make sure you define your coordinate axes).
- b) Which metal orbitals are of appropriate symmetry to mix with the SALC's in a)?
- c) Which SALC(s) of the above would have an IR active band associated with it (them)?